Contents
Images
Upload your image
DSS Images Other Images
Related articles
Planetary Nebula Abundances and Morphology: Probing the Chemical Evolution of the Milky Way This paper presents a homogeneous study of abundances in a sample of 79northern Galactic planetary nebulae (PNe) whose morphological classeshave been uniformly determined. Ionic abundances and plasma diagnosticswere derived from selected optical line strengths in the literature, andelemental abundances were estimated with the ionization correctionfactor developed by Kingsbourgh & Barlow in 1994. We compare theelemental abundances to the final yields obtained from stellar evolutionmodels of low- and intermediate-mass stars, and we confirm that mostbipolar PNe have high nitrogen and helium abundance and are the likelyprogeny of stars with main-sequence mass greater than 3Msolar. We derive =0.27 and discuss the implication of such ahigh ratio in connection with the solar neon abundance. We determine theGalactic gradients of oxygen and neon and foundΔlog(O/H)/ΔR=-0.01 dex kpc-1 andΔlog(Ne/H)/ΔR=-0.01 dex kpc-1. These flat PNgradients are irreconcilable with Galactic metallicity gradientsflattening with time.
| An Extended FUSE Survey of Diffuse O VI Emission in the Interstellar Medium We present a survey of diffuse O VI emission in the interstellar medium(ISM) obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE).Spanning 5.5 yr of FUSE observations, from launch through 2004 December,our data set consists of 2925 exposures along 183 sight lines, includingall of those with previously published O VI detections. The data wereprocessed using an implementation of CalFUSE version 3.1 modified tooptimize the signal-to-noise ratio and velocity scale of spectra from anaperture-filling source. Of our 183 sight lines, 73 show O VIλ1032 emission, 29 at >3 σ significance. Six of the 3σ features have velocities |vLSR|>120 kms-1, while the others have |vLSR|<=50 kms-1. Measured intensities range from 1800 to 9100 LU (lineunit; 1 photon cm-2 s-1 sr-1), with amedian of 3300 LU. Combining our results with published O VI absorptiondata, we find that an O VI-bearing interface in the local ISM yields anelectron density ne=0.2-0.3 cm-3 and a path lengthof 0.1 pc, while O VI-emitting regions associated with high-velocityclouds in the Galactic halo have densities an order of magnitude lowerand path lengths 2 orders of magnitude longer. Although the O VIintensities along these sight lines are similar, the emission isproduced by gas with very different properties.Based on observations made with the NASA-CNES-CSA Far UltravioletSpectroscopic Explorer. FUSE is operated for NASA by Johns HopkinsUniversity under NASA contract NAS5-32985.
| Galactic Planetary Nebulae with Wolf-Rayet Nuclei III. Kinematical Analysis of a Large Sample of Nebulae Expansion velocities (V_{exp}) of different ions and line widths at thebase of the lines are measured and analyzed for 24 PNe with [WC]-typenuclei (WRPNe), 9 PNe ionized by WELS (WLPNe) and 14 ordinary PNe. Acomparative study of the kinematical behavior of the sample clearlydemonstrates that WRPNe have on average 40-45% larger V_{exp}, andpossibly more turbulence than WLPNe and ordinary PNe. WLPNe havevelocity fields very much like the ones of ordinary PNe, rather than theones of WRPNe. All the samples (WRPNe, WLPNe and ordinary PNe) showexpansion velocities increasing with age indicators, for example is larger for low-density nebulae and also it is largerfor nebulae around high-temperature stars. This age effect is muchstronger for evolved WRPNe, suggesting that the [WC] winds have beenaccelerating the nebulae for a long time, while for non-WRPNe theacceleration seems to stop at some point when the star reaches atemperature of about 90,000 - 100,000. Non-WR nebulae reach a maximumV_{exp} ≤ 30 km s(-1) evolved WRPNe reach maximum V_{exp} about 40km s(-1) . For all kinds of objects (WRPNe and non-WRPNe) it is foundthat on average V_{exp}(N(+) ) is slightly larger than V_{exp}(O(++) ),indicating that the nebulae present acceleration of the external shells.
| The distances of less-evolved planetary nebulae: a further test of statistical distance scales It has recently been pointed out that a number of the methods used todetermine planetary nebulae (PNe) distances may be appreciably in error.Whilst the scales of Zhang (1995), Bensby & Lundstrom (2001) andothers are appropriate for higher radio brightness temperaturesTB, those of Phillips and Daub are more relevant whereTB is small.We note, in the following, that the absolute bolometric magnitudes ofless-evolved PNe are likely to be similar. The mean value of can therefore be used to constrain PNe distancesD, and confirm the distance scales for higher TB outflows. Wehave used this procedure to evaluate distances to a further 47 PNe, andwe find that the mean values of are consistent with those ofCahn, Kaler & Stanghellini (1992), Zhang (1995), Phillips et al.(2004) and van de Steene & Zijlstra (1995). They are, as expected,inconsistent with the lower TB scale of Phillips (2002a).
| The Chemical Composition of Galactic Planetary Nebulae with Regard to Inhomogeneity in the Gas Density in Their Envelopes The results of a study of the chemical compositions of Galacticplanetary nebulae taking into account two types of inhomogeneity in thenebular gas density in their envelopes are reported. New analyticalexpressions for the ionization correction factors have been derived andare used to determine the chemical compositions of the nebular gas inGalactic planetary nebulae. The abundances of He, N, O, Ne, S, and Arhave been found for 193 objects. The Y Z diagrams for various Heabundances are analyzed for type II planetary nebulae separately andjointly with HII regions. The primordial helium abundance Y p andenrichment ratio dY/dZ are determined, and the resulting values arecompared with the data of other authors. Radial abundance gradients inthe Galactic disk are studied using type II planetary nebulae.
| Unresolved Hα Enhancements at High Galactic Latitude in the WHAM Sky Survey Maps We have identified 85 regions of enhanced Hα emission at|b|>10deg subtending approximately 1° or less on theWisconsin Hα Mapper (WHAM) sky survey. These high-latitude ``WHAMpoint sources'' have Hα fluxes of 10-11-10-9ergs cm-2 s-1, radial velocities within about 70km s-1 of the LSR, and line widths that range from less than20 to about 80 km s-1 (FWHM). Twenty-nine of theseenhancements are not identified with either cataloged nebulae or hotstars and appear to have kinematic properties that differ from thoseobserved for planetary nebulae. Another 14 enhancements are near hotevolved low-mass stars that had no previously reported detections ofassociated nebulosity. The remainder of the enhancements are catalogedplanetary nebulae and small, high-latitude H II regions surroundingmassive O and early B stars.
| Some implications of the introduction of scattered starlight in the spectrum of reddened stars This paper presents new investigations on coherent scattering in theforward direction (orders of magnitude; conservation of energy;dependence of scattered light on geometry and wavelength), and on howscattered light contamination in the spectrum of reddened stars ispossibly related to as yet unexplained observations (the diminution ofthe 2200 Å bump when the obscuring material is close to the star,the difference between Hipparcos and photometric distances). This paperthen goes on to discuss the fit of the extinction curve, a possible roleof extinction by the gas in the far-UV, and the reasons of theinadequacy of the Fitzpatrick and Massa [ApJSS, 72 (1990) 163] fit.
| The Use of Line Excitation Mapping to Investigate Planetary Nebula Morphologies It is now well established that circular, elliptical, and bipolarplanetary nebulae (PNe) possess differing physical and spatialcharacteristics. Not only are their structures quite distinct, but theyalso appear to possess differing Zanstra temperatures, abundances,expansion velocities, brightness temperatures, and scale heights abovethe Galactic plane. We report here a further sensitive way in which thedifferences between these outflows may be illustrated. We shall notethat the nebulae posses varying ranges of emission line ratio, and thatthis is likely to arise as a consequence of their differing progenitormasses. Similarly, we point out the potential of line-ratio mapping foranalyzing other morphological classes, as well as for establishing theuniqueness of their populations, and their relative progenitor masses.Thus we find that sources containing jets often possess low lineemission intensities relative to hydrogen, suggesting that theirprogenitors may have low overall masses. This conclusion is supported bya variety of independent observational evidence. We also show thatirregular sources appear to represent a distinct class of outflows. Itis likely that their mean progenitor masses are greater than those ofelliptical PNe, but less than thoseof the bipolar outflows.
| Planetary nebula distances re-examined: an improved statistical scale The distances of planetary nebulae (PNe) are still quite uncertain.Although observational estimates are available for a small proportion ofPNe, based on statistical parallax and the like, such distances are verypoorly determined for the majority of galactic PNe. In particular,estimates of so-called `statistical' distance appear to differ byfactors of ~2.7.We point out that there is a well-defined correlation between the 5-GHzluminosity of the sources, L5, and their brightnesstemperatures, TB. This represents a different trend to thoseinvestigated in previous statistical analyses, and permits us todetermine independent distances to a further 449 outflows. Thesedistances are shown to be closely comparable to those determined using aTB-R correlation, providing that the latter trend is taken tobe non-linear.This non-linearity in the TB-R plane has not been noted inprevious analyses, and is likely responsible for the broad (andconflicting) ranges of distance that have previously been published.Finally, we point out that there is a close accord between observedtrends within the L5-TB and TB-Rplanes, and the variation predicted through nebular evolutionarymodelling. This is used to suggest that observational biases areprobably modest, and that our revised distance scale is reasonablytrustworthy.
| On the O II Ground Configuration Energy Levels The most accurate way to measure the energy levels for the O II2p3 ground configuration has been from the forbidden lines inplanetary nebulae. We present an analysis of modern planetary nebuladata that nicely constrain the splitting within the 2D termand the separation of this term from the ground4S3/2 level. We extend this method to H II regionsusing high-resolution spectroscopy of the Orion Nebula, covering all sixvisible transitions within the ground configuration. These data confirmthe splitting of the 2D term while additionally constrainingthe splitting of the 2P term. The energies of the2P and 2D terms relative to the ground(4S) term are constrained by requiring that all six linesgive the same radial velocity, consistent with independent limits placedon the motion of the O+ gas and the planetary nebula data.
| Wind accretion by a binary stellar system and disc formation I calculate the specific angular momentum of mass accreted by a binarysystem embedded in the dense wind of a mass-losing asymptotic giantbranch star. The accretion flow is of the Bondi-Hoyle-Lyttleton type.For most of the space of the relevant parameters the flow is basicallyan isothermal high Mach number accretion flow. I find that when theorbital plane of the accreting binary system and the orbital plane ofthe triple system are not parallel to each other, the accreted mass onto one or two of the binary system components has high specific angularmomentum. For a large fraction of triple-star systems, accretion discswill be formed around one or two of the stars in the binary system,provided that the mass ratio of the two stars in the accreting binarysystem is >~0.5. Such discs may blow jets which shape the descendantplanetary nebula (PN). The axis of jets will be almost parallel to theorbital plane of the triple-star system. One jet is blown outwardrelative to the wind, while the other jet passes near the mass-losingstar, and is more likely to be slowed down or deflected. I find thatduring the final asymptotic giant branch phase, when the mass-loss rateis very high, an accretion disc may form for orbital separation betweenthe accreting binary systems and the mass-losing star of up to ~400-800au. I discuss the implications for the shape of the descendant PN, andlist several PN which may have been shaped by an accreting binary-starsystem, i.e. by a triple-star system.
| A reanalysis of chemical abundances in galactic PNe and comparison with theoretical predictions New determinations of chemical abundances for He, N, O, Ne, Ar and Sare derived for all galactic planetary nebulae (PNe) so far observedwith a relatively high accuracy, in an effort to overcome differences inthese quantities obtained over the years by different authors usingdifferent procedures. These include: ways to correct for interstellarextinction, the atomic data used to interpret the observed line fluxes,the model nebula adopted to represent real objects and the ionizationcorrections for unseen ions. A unique `good quality' classical-typeprocedure, i.e. making use of collisionally excited forbidden lines toderive ionic abundances of heavy ions, has been applied to allindividual sets of observed line fluxes in each specific position withineach PN. Only observational data obtained with linear detectors, andsatisfying some `quality' criteria, have been considered. Suchobservations go from the mid-1970s up to the end of 2001. Theobservational errors associated with individual line fluxes have beenpropagated through the whole procedure to obtain an estimate of theaccuracy of final abundances independent of an author's `prejudices'.Comparison of the final abundances with those obtained in relevantmulti-object studies on the one hand allowed us to assess the accuracyof the new abundances, and on the other hand proved the usefulness ofthe present work, the basic purpose of which was to take full advantageof the vast amount of observations done so far of galactic PNe, handlingthem in a proper homogeneous way. The number of resulting PNe that havedata of an adequate quality to pass the present selection amounts to131. We believe that the new derived abundances constitute a highlyhomogeneous chemical data set on galactic PNe, with realisticuncertainties, and form a good observational basis for comparison withthe growing number of predictions from stellar evolution theory. Owingto the known discrepancies between the ionic abundances of heavyelements derived from the strong collisonally excited forbidden linesand those derived from the weak, temperature-insensitive recombinationlines, it is recognized that only abundance ratios between heavyelements can be considered as satisfactorily accurate. A comparison withtheoretical predictions allowed us to assess the state of the art inthis topic in any case, providing some findings and suggestions forfurther theoretical and observational work to advance our understandingof the evolution of low- and intermediate-mass stars.
| 12C/13C Ratio in Planetary Nebulae from the IUE Archives We investigated the abundance ratio of 12C/13C inplanetary nebulae by examining emission lines arising from C III2s2p3Po2,1,0-->2s21S0.Spectra were retrieved from the International Ultraviolet Explorerarchives, and multiple spectra of the same object were co-added toachieve improved signal-to-noise ratio. The 13C hyperfinestructure line at 1909.6 Å was detected in NGC 2440. The12C/13C ratio was found to be ~4.4+/-1.2. In allother objects, we provide an upper limit for the flux of the 1910Å line. For 23 of these sources, a lower limit for the12C/13C ratio was established. The impact on ourcurrent understanding of stellar evolution is discussed. The resultinghigh-signal-to-noise ratio C III spectrum helps constrain the atomicphysics of the line formation process. Some objects have the measured1907/1909 Å flux ratio outside the low-electron densitytheoretical limit for 12C. A mixture of 13C with12C helps to close the gap somewhat. Nevertheless, someobserved 1907/1909 Å flux ratios still appear too high to conformto the currently predicted limits. It is shown that this limit, as wellas the 1910/1909 Å flux ratio, are predominantly influenced byusing the standard partitioning among the collision strengths for themultiplet1S0-3PoJaccording to the statistical weights. A detailed calculation for thefine-structure collision strengths between these individual levels wouldbe valuable.
| A Survey for Water Maser Emission toward Planetary Nebulae: New Detection in IRAS 17347-3139 We report on a water maser survey toward a sample of 27 planetarynebulae (PNe) using the Robledo de Chavela and Medicina single-dishantennas, as well as the Very Large Array (VLA). Two detections havebeen obtained: the already known water maser emission in K3-35, and anew cluster of masers in IRAS 17347-3139. This low rate of detections iscompatible with the short lifetime of water molecules in PNe (~100 yr).The water maser cluster at IRAS 17347-3139 are distributed on a ellipseof size ~=0.2"×0.1", spatially associated with compact 1.3 cmcontinuum emission (simultaneously observed with the VLA). From archiveVLA continuum data at 4.9, 8.4, and 14.9 GHz, a spectral indexα=0.76+/-0.03 (Sν~να) is derivedfor this radio source, which is consistent with either a partiallyoptically thick ionized region or an ionized wind. However, the latterscenario can be ruled out by mass-loss considerations, thus indicatingthat this source is probably a young PN. The spatial distribution andthe radial velocities of the water masers are suggestive of a rotatingand expanding maser ring, tracing the innermost regions of a torusformed at the end of the asymptotic giant branch phase. Given that the1.3 cm continuum emission peak is located near one of the tips of themajor axis of the ellipse of masers, we speculate on a possible binarynature of IRAS 17347-3139, where the radio continuum emission couldbelong to one of the components and the water masers would be associatedwith a companion.
| A unique Galactic planetary nebula with a [WN] central star We report the discovery of the first probable Galactic [WN] central starof a planetary nebula (CSPN). The planetary nebula candidate was foundduring our systematic scans of the AAO/UKST Hα Survey of the MilkyWay. Subsequent confirmatory spectroscopy of the nebula and central starreveals the remarkable nature of this object. The nebular spectrum showsemission lines with large expansion velocities exceeding 150 kms-1, suggesting that perhaps the object is not a conventionalplanetary nebula. The central star itself is very red and is identifiedas being of the [WN] class, which makes it unique in the Galaxy. A largebody of supplementary observational data supports the hypothesis thatthis object is indeed a planetary nebula and not a Population IWolf-Rayet star with a ring nebula.
| Characteristics of Planetary Nebulae with [WC] Central Stars We have analyzed the plasma diagnostics (electron densities andtemperatures and abundance ratios), and the kinematics of a large sampleof planetary nebulae around [WC] stars by means of high resolutionspectra. The results have been compared with characteristics ofplanetary nebulae around WELS and non-WR central stars. We find that theproportion of nitrogen rich nebulae is larger in WRPNe than innon-WRPNe. None of the 9 nebulae around WELS in our sample showsN-enrichment. WRPNe have larger expansion velocities and/or largerturbulence than non-WRPNe demonstrating that the mechanical energy ofthe massive [WC] stellar wind largely affects the kinematical behaviorof nebulae. A weak relation between stellar temperature and expansionvelocities has been found for all kind of nebulae, indicating that oldernebulae expand faster. The effect is more important for WRPNe. Thiscould be useful in testing the evolutionary sequence [WC]-late ->[WC]-early, proposed for [WC] stars.
| The relation between Zanstra temperature and morphology in planetary nebulae We have created a master list of Zanstra temperatures for 373 galacticplanetary nebulae based upon a compilation of 1575 values taken from thepublished literature. These are used to evaluate mean trends intemperature for differing nebular morphologies. Among the most prominentresults of this analysis is the tendency forη=TZ(HeII)/TZ(HeI) to increase with nebularradius, a trend which is taken to arise from the evolution of shelloptical depths. We find that as many as 87 per cent of nebulae may beoptically thin to H ionizing radiation where radii exceed ~0.16 pc. Wealso note that the distributions of values η and TZ(HeII)are quite different for circular, elliptical and bipolar nebulae. Acomparison of observed temperatures with theoretical H-burning trackssuggests that elliptical and circular sources arise from progenitorswith mean mass ≅ 1 Msolar(although the elliptical progenitors are probably more massive).Higher-temperature elliptical sources are likely to derive fromprogenitors with mass ≅2 Msolar, however, implying thatthese nebulae (at least) are associated with a broad swathe ofprogenitor masses. Such a conclusion is also supported by trends in meangalactic latitude. It is found that higher-temperature ellipticalsources have much lower mean latitudes than those with smallerTZ(HeII), a trend which is explicable where there is anincrease in with increasing TZ(HeII).This latitude-temperature variation also applies for most other sources.Bipolar nebulae appear to have mean progenitor masses ≅2.5Msolar, whilst jets, Brets and other highly collimatedoutflows are associated with progenitors at the other end of the massrange (~ 1 Msolar). Indeed it ispossible, given their large mean latitudes and low peak temperatures,that the latter nebulae are associated with the lowest-mass progenitorsof all.The present results appear fully consistent with earlier analyses basedupon nebular scale heights, shell abundances and the relativeproportions of differing morphologies, and offer further evidence for alink between progenitor mass and morphology.
| Galactic Planetary Nebulae and their central stars. I. An accurate and homogeneous set of coordinates We have used the 2nd generation of the Guide Star Catalogue (GSC-II) asa reference astrometric catalogue to compile the positions of 1086Galactic Planetary Nebulae (PNe) listed in the Strasbourg ESO Catalogue(SEC), its supplement and the version 2000 of the Catalogue of PlanetaryNebulae. This constitutes about 75% of all known PNe. For these PNe, theones with a known central star (CS) or with a small diameter, we havederived coordinates with an absolute accuracy of ~0\farcs35 in eachcoordinate, which is the intrinsic astrometric precision of the GSC-II.For another 226, mostly extended, objects without a GSC-II counterpartwe give coordinates based on the second epoch Digital Sky Survey(DSS-II). While these coordinates may have systematic offsets relativeto the GSC-II of up to 5 arcsecs, our new coordinates usually representa significant improvement over the previous catalogue values for theselarge objects. This is the first truly homogeneous compilation of PNepositions over the whole sky and the most accurate one available so far.The complete Table \ref{tab2} is only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/1029}
| Central Stars of Young Planetary Nebulae - A New Class of Variables Not Available
| Multiwavelength Observations of the Peculiar Planetary Nebula IC 2149 We report high- and low-dispersion spectroscopy, optical imaging, andhigh-resolution Very Large Array-A λ3.6 cm continuum observationsof the peculiar planetary nebula IC 2149. These observations show that``bipolar'' is a suitable morphological classification for IC 2149. Mostnebular material is concentrated in a knotty, bright ring seen edge-on,embedded in an apparently oblate ellipsoidal shell from which remnant orincipient bipolar lobes emerge. We confirm the previously reporteddepletion in heavy elements and deduce a very low ejected nebular mass<~0.03 Msolar. All this information indicates that theformation of IC 2149 is the result of the evolution of a low-masscentral star.
| The Correlations between Planetary Nebula Morphology and Central Star Evolution: Analysis of the Northern Galactic Sample Northern Galactic planetary nebulae (PNs) are studied to disclosepossible correlations between the morphology of the nebulae and theevolution of the central stars (CSs). To this end, we have built thebest database available to date, accounting for homogeneity andcompleteness. We use updated statistical distances and an updatedmorphological classification scheme, and we calculate Zanstratemperatures for a large sample of PNs. With our study we confirm thatround, elliptical, and bipolar PNs have different spatial distributionswithin the Galaxy, with average absolute distances to the Galactic planeof 0.73, 0.38, and 0.21 kpc, respectively. We also find evidence thatthe distributions of the CS masses are different across thesemorphological groups, although we do not find that CSs hosted by bipolarPNs are hotter, on average, than CSs within round and elliptical PNs.Our results are in broad agreement with previous analyses, indicatingthat round, elliptical, and bipolar PNs evolve from progenitors indifferent mass ranges and might belong to different stellar populations,as also indicated by the helium and nitrogen abundances of PNs ofdifferent morphology.
| Gas temperature and excitation classes in planetary nebulae Empirical methods to estimate the elemental abundances in planetarynebulae usually use the temperatures derived from the [O III] and [N II]emission-line ratios, respectively, for the high- and low-ionizationzones. However, for a large number of objects these values may not beavailable. In order to overcome this difficulty and allow a betterdetermination of abundances, we discuss the relationship between thesetwo temperatures. Although a correlation is not easily seen when asample of different PNe types is used, the situation is improved whenthey are gathered into excitation classes. From [OII]/[OIII] andHeII/HeI line ratios, we define four excitation classes. Then, usingstandard photoionization models which fit most of the data, a linearrelation between the two temperatures is obtained for each of the fourexcitation classes. The method is applied to several objects for whichonly one temperature can be obtained from the observed emission linesand is tested by recalculation of the radial abundance gradient of theGalaxy using a larger number of PNe. We verified that our previousgradient results, obtained with a smaller sample of planetary nebulae,are not changed, indicating that the temperature relation obtained fromthe photoionization models are a good approximation, and thecorresponding statistical error decreases as expected. Tables 3-5, 7 and9 are only available in electronic form at http://www.edpsciences.org
| The Structure of the Planetary Nebula IC 2149: A Jet or an Edge-On Ring? A set of optical and radio observations of the peculiar planetary nebula(PN) IC 2149 is presented. A bow-shock-like feature towards the NE edgeis first detected with the VLA-A, and is also confirmed with HST archiveimages. Optical spectroscopy leads to apparently contradictory results,leaving this object as a unique case among the planetary nebulae.
| Study of electron density in planetary nebulae. A comparison of different density indicators We present a comparison of electron density estimates for planetarynebulae based on different emission-line ratios. We have considered thedensity indicators [O Ii]lambda 3729/lambda 3726, [S Ii]lambda6716/lambda 6731, [Cl Iii]lambda 5517/lambda 5537, [Ar Iv]lambda4711/lambda 4740, C Iii]lambda 1906/lambda 1909 and [N I]lambda5202/lambda 5199. The observational data were extracted from theliterature. We have found systematic deviations from the densityhomogeneous models, in the sense that: Ne(ion {N}i) <~Ne(ion {O}{ii}) < Ne(ion {S}{ii}, ion {C}{iii},ion {Cl}{iii} or ion {Ar}{iv}) and Ne(ion {S}{ii}) ~Ne(ion {C}{iii}) ~ Ne(ion {Cl}{iii}) ~Ne(ion {Ar}{iv}). We argue that the lower [O Ii] densityestimates are likely due to errors in the atomic parameters used.
| Helium contamination from the progenitor stars of planetary nebulae: The He/H radial gradient and the ΔY / ΔZ enrichment ratio In this work, two aspects of the chemical evolution of 4He inthe Galaxy are considered on the basis of a sample of disk planetarynebulae (PN). First, an application of corrections owing to thecontamination of 4He from the evolution of the progenitorstars shows that the He/H abundance by number of atoms is reduced by0.012 to 0.015 in average, leading to an essentially flat He/H radialdistribution. Second, a determination of the helium to heavy elementenrichment ratio using the same corrections leads to values in the range2.8 < ΔY / ΔZ < 3.6 for Y p = 0.23 and 2.0< ΔY / ΔZ < 2.8 for Y p = 0.24, in goodagreement with recent independent determinations and theoretical models.
| The Galactic disc distribution of planetary nebulae with warm dust emission features - I We investigate the Galactic disc distribution of a sample of planetarynebulae characterized in terms of their mid-infrared spectral features.The total number of Galactic disc PNe with 8-13μm spectra is broughtup to 74 with the inclusion of 24 new objects, the spectra of which wepresent for the first time. 54 PNe have clearly identified warm dustemission features, and form a sample that we use to construct thedistribution of the C/O chemical balance in Galactic disc PNe. The dustemission features complement the information on the progenitor massesbrought by the gas-phase N/O ratios: PNe with unidentified infraredemission bands have the highest N/O ratios, while PNe with the silicatesignature have either very high N enrichment or close to none. We find atrend for a decreasing proportion of O-rich PNe towards the third andfourth Galactic quadrants. Two independent distance scales confirm thatthe proportion of O-rich PNe decreases from 30\pm 9 per cent inside the solar circle to 14\pm 7 per cent outside. PNe with warm dustare also the youngest. PNe with no warm dust are uniformly distributedin C/O and N/O ratios, and do not appear to be confined to C/O\sim 1. They also have higher 6-cmfluxes, as expected from more evolved PNe. We show that the IRAS fluxesare a good representation of the bolometric flux for compact andIR-bright PNe, which are probably optically thick. Selection of objectswith \fontshape{it}{F}(12\hphantom{0}\mu m)>0.5\hphantom{0} Jyshould probe a good portion of the Galactic disc for these young, denseand compact nebulae, and the dominant selection effects are rooted inthe PN catalogues.
| Low-Ionization Structures in Planetary Nebulae: Confronting Models with Observations Around 50 planetary nebulae (PNs) are presently known to possess``small-scale'' low-ionization structures (LISs) located inside oroutside their main nebular bodies. We consider here the different kindsof LISs (jets, jetlike systems, symmetrical and nonsymmetrical knots)and present a detailed comparison of the existing model predictions withthe observational morphological and kinematical properties. We find thatnebulae with LISs appear indistinctly spread among all morphologicalclasses of PNs, indicating that the processes leading to the formationof LISs are not necessarily related to those responsible for theasphericity of the large-scale morphological components of PNs. We showthat both the observed velocities and locations of most nonsymmetricalsystems of LISs can be reasonably well reproduced assuming either fossilcondensations originated in the asymptotic giant branch (AGB) wind or insitu instabilities. The jet models proposed to date (hydrodynamical andmagnetohydrodynamical interacting winds or accretion disk collimatedwinds) appear unable to account simultaneously for several keycharacteristics of the observed high-velocity jets, such as theirkinematical ages and the angle between the jet and the symmetry axes ofthe nebulae. The linear increase in velocity observed in several jetsfavors magnetohydrodynamical confinement compared to pure hydrodynamicalinteracting wind models. On the other hand, we find that the formationof jetlike systems characterized by relatively low expansion velocities(similar to those of the main shells of PNs) cannot be explained by anyof the existing models. Finally, the knots that appear in symmetricaland opposite pairs of low velocity could be understood as the survivalof fossil (symmetrical) condensations formed during the AGB phase or asstructures that have experienced substantial slowing down by the ambientmedium.
| Gravity distances of planetary nebulae II. Aplication to a sample of galactic objects. Not Available
| Emission from an Inhomogeneous Plasma: Line Intensities and Determination of Elemental Abundances in Gaseous Nebulae with Fluctuations of Te and ne A method is proposed for determining the abundances of chemical elementsin planetary nebulae based on allowance for the actual distributionfunctions of errors in measuring line intensities. Fluctuations both intemperature and in mass density of a nebula are taken into account inthe proposed method. The results of a determination of C and Oabundances and of the amplitudes of temperature and density fluctuationsare given.
| On the abundance gradient of the galactic disk Estimates of the gas temperature in planetary nebulae obtained from the[O III] emission line ratio and from the Balmer discontinuity indicatedifferences reaching up to 6000 K (Liu & Danziger 1993). The [O III]temperature is commonly used to obtain the ionic fractions of highlyionized ions, particularly the O++ and Ne++ ions when using theempirical method to calculate the elemental abundances of photoionizedgas from the observed emission line intensities. However, if the gastemperature is overestimated the elemental abundances may beunderestimated. In particular this may lead to an incorrect elementalabundance gradient for the Galaxy, usually used as a constraint for thechemical evolution models. Using Monte Carlo simulations, we calculatethe systematic error introduced in the abundance gradient obtained fromplanetary nebulae by an overestimation of the gas temperature. Theresults indicate that the abundance gradient in the Galaxy should besteeper than previously assumed.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Catalogs and designations:
|