Home     Baþlangýç     Evrende yaþayabilmek için    
Inhabited Sky
    News@Sky     Gökyüzü görüntüsü     Koleksiyon     Forum     Blog New!     SSS     Basýn     Giriþ  

NGC 2136


Ýçindekiler

Görüntüler

Resim Yükleyin

DSS Images   Other Images


Ýlgili Makaleler

The evolution of binary star clusters and the nature of NGC 2136/NGC 2137
We study the evolution of bound pairs of star clusters by means ofdirect N-body simulations. Our simulations include mass loss by stellarevolution. The initial conditions are selected to mimic the observedbinary star clusters, NGC2136 and 2137, in the Large Magellanic Cloud.Based on their rather old ages (~100Myr), masses, sizes and projectedseparation, we conclude that the cluster pair must have been born withan initial separation of 15-20 pc. Clusters with a smaller initialseparation tend to merge in <~60Myr due to loss of angular momentumfrom escaping stars. Clusters with a larger initial separation tend tobecome even more widely separated due to mass loss from the evolvingstellar populations. The early orbital evolution of a binary cluster isgoverned by mass loss from the evolving stellar population and by lossof angular momentum from escaping stars. Mass loss by stellar winds andsupernovae explosions in the first ~30Myr causes the binary to expandand the orbit to become eccentric. The initially less massive clusterexpands more quickly than the binary separation increases, and istherefore bound to initiate mass transfer to the more massive cluster.This process is quite contrary to stellar binaries in which the moremassive star tends to initiate mass transfer. Since mass transferproceeds on a thermal time-scale from the less massive to the moremassive cluster, this semidetached phase is quite stable, even in aneccentric orbit until the orbital separation reaches the gyration radiusof the two clusters, at which point both clusters merge to one.

Ages and Metallicities of Extragalactic Globular Clusters from Spectral and Photometric Fits of Stellar Population Synthesis Models
Spectra of galaxies contain an enormous amount of information about therelative mixture of ages and metallicities of constituent stars. Wepresent a comprehensive study designed to extract the maximuminformation from spectra of data quality typical in large galaxysurveys. These techniques are not intended for detailed stellarpopulation studies that use high-quality spectra. We test techniques ona sample of globular clusters, which should consist of single stellarpopulations and provide good test cases, using the Bruzual-Charlothigh-resolution stellar population synthesis models to simultaneouslyestimate the ages and metallicities of 101 globular clusters in M31 andthe Magellanic Clouds. The clusters cover a wide range of ages andmetallicities, 4 Myr

The TP-AGB phase. Lifetimes from C and M star counts in Magellanic Cloud clusters
Using available data for C and M giants with M_bol<-3.6 in MagellanicCloud clusters, we derive limits to the lifetimes for the correspondingevolutionary phases, as a function of stellar mass. The C-star phase isfound to have a duration between 2 and 3 Myr for stars in the mass rangefrom ~1.5 to 2.8 M_ȯ. There is also an indication that the peak ofC-star lifetime shifts to lower masses (from slightly above to slightlybelow 2 Mȯ) as we move from LMC to SMC metallicities.The M-giant lifetimes also peak at ~2 Mȯ in the LMC,with a maximum value of about 4 Myr, whereas in the SMC their lifetimesappear much shorter, but, actually, they are poorly constrained by thedata. These numbers constitute useful constraints to theoretical modelsof the TP-AGB phase. We show that several models in the literatureunderestimate the duration of the C-star phase at LMC metallicities.

Chemically peculiar stars in the Large Magellanic Cloud
Context: .The detection of magnetic chemically peculiar (CP2) stars inopen clusters of extragalactic systems can give observational answers tomany unsolved questions. For example, one can study the influence ofdifferent global as well local environments on the lack of and presenceof peculiarities. Aims: .The mean percentage of CP2 stars in theMilky Way is of the order of 5% for the spectral range from early B- toF-type, luminosity class V objects. The origin of the CP2 phenomenonseems to be closely connected to the overall metallicity and globalmagnetic field environment. The theoretical models are still only testedby observations in the Milky Way. It is therefore essential to providehigh quality observations in rather different global environments.Methods: .The young clusters NGC 2136/7 were observed in the Δ aphotometric system. This intermediate band photometric system samplesthe depth of the 520 nm flux depression by comparing the flux at thecenter with the adjacent regions with bandwidths of 11 nm to 23 nm. TheΔ a photometric system is most suitable for detecting CP2 starswith high efficiency, but is also capable of detecting a smallpercentage of non-magnetic CP objects. Furthermore, the groups of(metal-weak) λ Bootis, as well as classical Be/shell stars, canbe successfully investigated. Results: .We present high precisionphotometric Δ a observations of 417 objects in NGC 2136/7 and itssurrounding field, of which five turned out to be bona fide magnetic CPstars. In addition, we discovered two Be/Ae stars. Conclusions:.From our investigations of NGC 1711, NGC 1866, NGC 2136/7, theirsurroundings, and one independent field of the LMC population, we derivean occurrence of classical chemically peculiar stars of 2.2(6)% in theLMC, which is only half the value found in the Milky Way. The mass andage distribution of the photometrically detected CP stars is notdifferent from that of similar objects in galactic open clusters.

Red Giant Stars in the Large Magellanic Cloud Clusters
We present deep J, H, and Ks photometry and accurate colormagnitude diagrams down to K~18.5 for a sample of 13 globular clustersin the Large Magellanic Cloud. This data set combined with the previoussample of six clusters published by our group gives the opportunity tostudy the properties of giant stars in clusters with different ages(ranging from ~80 Myr up to 3.5 Gyr). Quantitative estimates of starpopulation ratios (by number and luminosity) in the asymptotic giantbranch (AGB), the red giant branch (RGB), and the He clump have beenobtained and compared with theoretical models in the framework ofprobing the so-called phase transitions. The AGB contribution to thetotal luminosity starts to be significant at ~200 Myr and reaches itsmaximum at 500-600 Myr, when the RGB phase transition is starting. At~900 Myr the full development of an extended and well-populated RGB hasbeen completed. The occurrences of both the AGB and RGB phasetransitions are sharp events, lasting a few hundred megayears only.These empirical results agree very well with the theoretical predictionsof simple stellar population models based on canonical tracks and thefuel-consumption approach.Based on observations collected at the European Southern Observatory, LaSilla, Chile, using SOFI at the 3.5 m NTT, within the observing programs64.N-0038 and 68.D-0287.

A Database of 2MASS Near-Infrared Colors of Magellanic Cloud Star Clusters
The (rest-frame) near-IR domain contains important stellar populationdiagnostics and is often used to estimate masses of galaxies at low, aswell as high, redshifts. However, many stellar population models arestill relatively poorly calibrated in this part of the spectrum. Toallow an improvement of this calibration we present a new database ofintegrated near-IR JHKs magnitudes for 75 star clusters inthe Magellanic Clouds, using the Two Micron All Sky Survey (2MASS). Themajority of the clusters in our sample have robust age and metallicityestimates from color-magnitude diagrams available in the literature, andpopulate a range of ages from 10 Myr to 15 Gyr and a range in [Fe/H]from -2.17 to +0.01 dex. A comparison with matched star clusters in the2MASS Extended Source Catalog (XSC) reveals that the XSC only provides agood fit to the unresolved component of the cluster stellar population.We also compare our results with the often-cited single-channel JHKphotometry of Persson and coworkers and find significant differences,especially for their 30" diameter apertures, up to ~2.5 mag in the Kband, more than 1 mag in J-K, and up to 0.5 mag in H-K. Usingsimulations to center apertures based on maximum light throughput (asperformed by Persson et al.), we show that these differences can beattributed to near-IR-bright cluster stars (e.g., carbon stars) locatedaway from the true center of the star clusters. The wide age andmetallicity coverage of our integrated JHKs photometry sampleconstitute a fundamental data set for testing population synthesis modelpredictions and for direct comparison with near-IR observations ofdistant stellar populations.

Integrated-light VRI imaging photometry of globular clusters in the Magellanic Clouds
We present accurate integrated-light photometry in Johnson/Cousins V, Rand I for a sample of 28 globular clusters in the Magellanic Clouds. Themajority of the clusters in our sample have reliable age and metallicityestimates available in the literature. The sample encompasses agesbetween 50 Myr and 7 Gyr, and metallicities ([Fe/H]) between -1.5 and0.0 dex. The sample is dominated by clusters of ages between roughly 0.5and 2 Gyr, an age range during which the bolometric luminosity of simplestellar populations is dominated by evolved red giant branch stars andthermally pulsing asymptotic giant branch (TP-AGB) stars whosetheoretical colours are rather uncertain. The VRI colours presented inthis paper have been used to calibrate stellar population synthesismodel predictions.

Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters
We present a database of structural and dynamical properties for 153spatially resolved star clusters in the Milky Way, the Large and SmallMagellanic Clouds, and the Fornax dwarf spheroidal. This databasecomplements and extends others in the literature, such as those ofHarris and Mackey & Gilmore. Our cluster sample comprises 50 ``youngmassive clusters'' in the LMC and SMC, and 103 old globular clustersbetween the four galaxies. The parameters we list include central andhalf-light-averaged surface brightnesses and mass densities; core andeffective radii; central potentials, concentration parameters, and tidalradii; predicted central velocity dispersions and escape velocities;total luminosities, masses, and binding energies; central phase-spacedensities; half-mass relaxation times; and ``κ-space'' parameters.We use publicly available population-synthesis models to computestellar-population properties (intrinsic B-V colors, reddenings, andV-band mass-to-light ratios) for the same 153 clusters plus another 63globulars in the Milky Way. We also take velocity-dispersionmeasurements from the literature for a subset of 57 (mostly old)clusters to derive dynamical mass-to-light ratios for them, showing thatthese compare very well to the population-synthesis predictions. Thecombined data set is intended to serve as the basis for futureinvestigations of structural correlations and the fundamental plane ofmassive star clusters, including especially comparisons between thesystemic properties of young and old clusters.The structural and dynamical parameters are derived from fitting threedifferent models-the modified isothermal sphere of King; an alternatemodified isothermal sphere based on the ad hoc stellar distributionfunction of Wilson; and asymptotic power-law models withconstant-density cores-to the surface-brightness profile of eachcluster. Surface-brightness data for the LMC, SMC, and Fornax clustersare based in large part on the work of Mackey & Gilmore, but includesignificant supplementary data culled from the literature and importantcorrections to Mackey & Gilmore's V-band magnitude scale. Theprofiles of Galactic globular clusters are taken from Trager et al. Weaddress the question of which model fits each cluster best, finding inthe majority of cases that the Wilson models-which are spatially moreextended than King models but still include a finite, ``tidal'' cutoffin density-fit clusters of any age, in any galaxy, as well as or betterthan King models. Untruncated, asymptotic power laws often fit about aswell as Wilson models but can be significantly worse. We argue that theextended halos known to characterize many Magellanic Cloud clusters maybe examples of the generic envelope structure of self-gravitating starclusters, not just transient features associated strictly with youngage.

The near-IR surface brightness method applied to six Cepheids in the young LMC cluster NGC 1866
We present new near-IR light curves for six Cepheids in the young blueLMC cluster NGC 1866 as well as high precision radial velocity curvesfor ten Cepheids in NGC 1866 and two in NGC 2031. For the six Cepheidsin NGC 1866 with new J and K light curves we determine distances andabsolute magnitudes by applying the near-IR surface brightness method.We find that the formal error estimates on the derived distances areunderestimated by about a factor of two. We find excellent agreementbetween the absolute magnitudes for the low metallicity LMC Cepheidswith the Period-Luminosity (P-L) relation determined by the near-IRsurface brightness (ISB) method for Galactic Cepheids suggesting thatthe slope of the P-L relations for low metallicity and solar metallicitysamples could be very similar in contrast to other recent findings.Still there appears to be significant disagreement between the observedslopes of the OGLE based apparent P-L relations in the LMC and theslopes derived from ISB analysis of Galactic Cepheids, and by inferencefor Magellanic Cloud Cepheids, indicating a possible intrinsic problemwith the ISB method itself. Resolving this problem could reaffirm theP-L relation as the prime distance indicator applicable as well tometallicities significantly different from the LMC value.

Ages and metallicities of star clusters: New calibrations and diagnostic diagrams from visible integrated spectra
We present homogeneous scales of ages and metallicities for starclusters from very young objects, through intermediate-age ones up tothe oldest known clusters. All the selected clusters have integratedspectra in the visible range, as well as reliable determinations oftheir ages and metallicities. From these spectra equivalent widths (EWs)of K Ca II, G band (CH) and Mg I metallic, and Hδ, Hγ andHβ Balmer lines have been measured homogeneously. The analysis ofthese EWs shows that the EW sums of the metallic and Balmer H lines,separately, are good indicators of cluster age for objects younger than10 Gyr, and that the former is also sensitive to cluster metallicity forages greater than 10 Gyr. We propose an iterative procedure forestimating cluster ages by employing two new diagnostic diagrams and agecalibrations based on the above EW sums. For clusters older than 10 Gyr,we also provide a calibration to derive their overall metal contents.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Cepheids in LMC Clusters and the Period-Age Relation
We have made a new comparison of the positions of Cepheids and clustersin the LMC and constructed a new empirical period-age relation takinginto account all available data on Cepheids in the LMC bar provided bythe OGLE project. The most probable relation is logT=8.50-0.65 logP, inreasonably good agreement with theoretical expectations. NumerousCepheids in rich clusters of the LMC provide the best data for comparingtheories of stellar evolution and pulsation and the dynamical evolutionof clusters with observations. These data suggest that stars undergoingtheir first crossing of the instability strip are first-overtonepulsators, though the converse is true of only a small fraction offirst-overtone stars. Several rich clusters with suitable ages have noCepheids—a fact that is not understood and requires verification.Differences in the concentration of Cepheids toward their clustercenters probably reflect the fact that the clusters are at differentstages of their dynamical evolution, with the Cepheids in clustercoronas being ejected from the cluster cores during dynamicalinteractions between stars.

Analyzing Starbursts Using Magellanic Cloud Star Clusters as Simple Stellar Populations
Integrated spectra have been obtained of 31 star clusters in theMagellanic Clouds (MC) and of four Galactic globular clusters. Thespectra cover the wavelength range 3500-4700 Å at a resolution of3.2 Å FWHM. The MC clusters primarily cover the age range fromless than 108 to about 3 Gyr and hence are well-suited to anempirical study of aging poststarburst stellar populations. Anage-dating method is presented that relies on two spectral absorptionfeature indices, Hδ/Fe I λ4045 and Ca II, as well as anindex measuring the strength of the Balmer discontinuity. We compare thebehavior of the spectral indices in the observed integrated spectra ofthe MC clusters with that of indices generated from theoreticalevolutionary synthesis models of varying age and metal abundance. Thesynthesis models are based on those of Worthey, when coupled with thecombination of an empirical library of stellar spectra by Jones for thecooler stars and synthetic spectra, generated from Kurucz modelatmospheres, for the hotter stars. Overall, we find good agreementbetween the ages of the MC clusters derived from our integrated spectra(and the evolutionary synthesis modelling of the spectral indices) andages derived from analyses of the cluster color-magnitude diagrams, asfound in the literature. Hence, the principal conclusion of this studyis that ages of young stellar populations can be reliably measured frommodelling of their integrated spectra.

Near-infrared color evolution of LMC clusters
We present here the digital aperture photometry for 28 LMC clusterswhose ages are between 5 Myr and 12 Gyr. This photometry is based on ourimaging observations in JHK and contains integrated magnitudes andcolors as a function of aperture radius. In contrast to optical colors,our near-infrared colors do not show any strong dependence on clusterages.Tables 2 and 3 and Fig. 2 are only available in electronic form athttp://www.edpsciences.org

Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud
We have compiled a pseudo-snapshot data set of two-colour observationsfrom the Hubble Space Telescope archive for a sample of 53 rich LMCclusters with ages of 106-1010 yr. We presentsurface brightness profiles for the entire sample, and derive structuralparameters for each cluster, including core radii, and luminosity andmass estimates. Because we expect the results presented here to form thebasis for several further projects, we describe in detail the datareduction and surface brightness profile construction processes, andcompare our results with those of previous ground-based studies. Thesurface brightness profiles show a large amount of detail, includingirregularities in the profiles of young clusters (such as bumps, dipsand sharp shoulders), and evidence for both double clusters andpost-core-collapse (PCC) clusters. In particular, we find power-lawprofiles in the inner regions of several candidate PCC clusters, withslopes of approximately -0.7, but showing considerable variation. Weestimate that 20 +/- 7 per cent of the old cluster population of theLarge Magellanic Cloud (LMC) has entered PCC evolution, a similarfraction to that for the Galactic globular cluster system. In addition,we examine the profile of R136 in detail and show that it is probablynot a PCC cluster. We also observe a trend in core radius with age thathas been discovered and discussed in several previous publications bydifferent authors. Our diagram has better resolution, however, andappears to show a bifurcation at several hundred Myr. We argue that thisobserved relationship reflects true physical evolution in LMC clusters,with some experiencing small-scale core expansion owing to mass loss,and others large-scale expansion owing to some unidentifiedcharacteristic or physical process.

A statistical study of binary and multiple clusters in the LMC
Based on the Bica et al. (\cite{bica}) catalogue, we studied the starcluster system of the LMC and provide a new catalogue of all binary andmultiple cluster candidates found. As a selection criterion we used amaximum separation of 1farcm4 corresponding to 20 pc (assuming adistance modulus of 18.5 mag). We performed Monte Carlo simulations andproduced artificial cluster distributions that we compared with the realone in order to check how many of the found cluster pairs and groups canbe expected statistically due to chance superposition on the plane ofthe sky. We found that, depending on the cluster density, between 56%(bar region) and 12% (outer LMC) of the detected pairs can be explainedstatistically. We studied in detail the properties of the multiplecluster candidates. The binary cluster candidates seem to show atendency to form with components of similar size. When possible, westudied the age structure of the cluster groups and found that themultiple clusters are predominantly young with only a few cluster groupsolder than 300 Myr. The spatial distribution of the cluster pairs andgroups coincides with the distribution of clusters in general; however,old groups or groups with large internal age differences are mainlylocated in the densely populated bar region. Thus, they can easily beexplained as chance superpositions. Our findings show that a formationscenario through tidal capture is not only unlikely due to the lowprobability of close encounters of star clusters, and thus the evenlower probability of tidal capture, but the few groups with largeinternal age differences can easily be explained with projectioneffects. We favour a formation scenario as suggested by Fujimoto &Kumai (\cite{fk}) in which the components of a binary cluster formedtogether and thus should be coeval or have small age differencescompatible with cluster formation time scales. Table 6 is only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/547

Research in Concepción on globular cluster systems and galaxy formation, and the extragalactic distance scale
Not Available

Large Magellanic Cloud stellar clusters. I. 21 HST colour magnitude diagrams
We present WFPC2 photometry of 21 stellar clusters of the LargeMagellanic Cloud obtained on images retrieved from the Hubble SpaceTelescope archive. The derived colour magnitude diagrams (CMDs) arepresented and discussed. This database provides a sample of CMDsrepresenting, with reliable statistics, simple stellar populations witha large spread of age. The stars in the core of the clusters are allresolved and measured at least down to the completeness limit; themagnitudes of the main sequence terminations and of the red giant clumpare also evaluated for each cluster, together with the radius at halfmaximum of the star density. Based on observations made with theNASA/ESA Hubble Space Telescope, obtained from the data archive at theSpace Telescope Institute. STScI is operated by the association ofUniversities for Research in Astronomy, Inc. under the NASA contract NAS5-26555. Table 1 is only available in electronic form athttp://www.edpsciences.org

Age and metallicity for six LMC clusters and their surrounding field population
We investigate, on the basis of CCD Strömgren photometry, the agesand metallicities of six LMC clusters together with their surroundingfield population. The clusters and metallicities are: NGC 1651 (in therange [Fe/H] = -0.65 dex to -0.41 dex), NGC 1711 (-0.57 ∓ 0.17dex), NGC 1806 (-0.71 ∓ 0.23 dex), NGC 2031 (-0.52 ∓ 0.21dex) and NGC 2136/37 (-0.55 ∓ 0.23 dex) and NGC 2257 (-1.63∓ 0.21 dex). The metallicities for NGC 1651, NGC 1711, NGC 1806and NGC 2031 have been determined for the first time (NGC 2031 and NGC2136/37 are interesting for the Cepheid distance scale). In the clustersurroundings, we found about 650 field stars that were suitable to beused for a determination of an age-metallicity relation (AMR). Ourmethod is to estimate ages for individual stars on the basis ofStrömgren isochrones with individually measured metallicities. Withthis method we are able to sample the AMR of the field population up to8 Gyr. Our metallicity data are incompatible with models predicting manymetal-poor stars (G-dwarf problem). The metallicity of the fieldpopulation increased by a factor of six, starting around 2 Gyr ago. Theproposed AMR is consistent with the AMR of the LMC cluster system(including ESO 121 SC03 and three clusters with an age of 4 Gyr). Theproposed AMR is incompatible with the recently proposed AMR by Pagel& Tautvaisiene.

Star Clusters in Local Group Galaxies
Not Available

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

Chemical evolution and star formation history in the LMC from cluster and field stars
We investigate, on the basis of CCD Strömgren photometry, the agesand metallicities of six LMC clusters together with their surroundingfield population. The clusters and metallicities are: NGC 1651 (in therange [Fe/H]=-0.65 dex to -0.41 dex), NGC 1711 (-0.64+/-0.18 dex), NGC1806 (-0.67+/-0.24 dex), NGC 2031 (-0.40+/-0.21 dex) and NGC 2136/37(-0.43+/-0.23 dex). The metallicities for NGC 1651, NGC 1711, NGC 1806and NGC 2031 have been determined for the first time (NGC 2031 and NGC2136/37 are interesting for the Cepheid distance scale). In the clustersurroundings, we found about 700 field stars that were suitable to beused for a determination of an age-metallicity relation (AMR) and a starformation history (SFH). Our method was to estimate ages for individualstars on the basis of Strömgren isochrones with individuallymeasured metallicities. With this method we are able to sample the AMRand SFH of the field population up to 8 Gy. Our metallicity data areincompatible with models predicting many metal-poor stars. Themetallicity of the field population increased by a factor of seven,starting around 2 Gy ago. This increase was preceded by an increase ofthe star formation rate 3-4 Gy ago. The results support the SFH found inearlier investigations of the LMC field population. The absence of starclusters between 4 Gy and 10 Gy agrees very well with a low rate of thestar formation during that time.

The evolution of theV-Kcolours of single stellar populations
Models of evolutionary population synthesis of galaxies rely on theproperties of the so-called single stellar populations (SSP). In thispaper, we discuss how the integrated near-infrared colours, andespecially V-K, of SSPs evolve with age and metallicity. Some of theuncertainties associated with the properties of the underlying stellarmodels are thoroughly discussed. Our models include all the relevantstellar evolutionary phases, with particular attention being dedicatedto the asymptotic giant branch (AGB), which plays a fundamental role inthe evolution of the near-infrared part of the spectrum. First, wepresent the effects that different formulations for the mass-loss ratesproduce on the final remnant mass (i.e., on the initial-final massrelation), and hence on the AGB-termination luminosity and the relativecontribution of these stars to the integrated light. The results for theevolution of the V-K colour are very different depending on the choiceof the mass-loss prescription; the same is true also for the B-V colourin the case of low-metallicity SSPs. Secondly, we describe the changesoccurring in the integrated colours at the onset of the AGB and redgiant (RGB) branches. According to the classical formalism for the AGBevolution, the onset of this evolutionary phase is marked by a colourjump to the red, the amplitude of which is shown here to be highlydependent on the metallicity and mass-loss rates adopted in the models.We then consider the effect of the overluminosity with respect to thestandard core mass-luminosity relation that occurs in the most massiveAGB stars. Different simplified formulations for this effect are testedin the models; they cause a smoothing of the colour evolution in the agerange at which the AGB starts to develop, rather than a splitting of thecolour jump into two separate events. On the other hand, we find that atemporary red phase takes place ~1.5x10^8 yr after the RGB develops.Thanks to the transient nature of this feature, the onset of the RGB isprobably not able to cause marked features in the spectral evolution ofgalaxies. We then discuss the possible reasons for the transition of V-Kcolours (from ~1.5 to 3) that takes place in LMC clusters of SWB typeIV. A revision of the ages attributed to the single clusters revealsthat the transition may not be as fast as originally suggested. Thecomparison of the data with the models indicates that the transitionresults mainly from the development of the AGB. A gradual (or delayed)transition of the colours, as predicted by models which include theoverluminosity of the most massive AGB stars, seems to describe the databetter than the sudden colour jump predicted by classical models.

Hierarchical star formation from the time-space distribution of star clusters in the Large Magellanic Cloud
The average age difference between pairs of star clusters in the LargeMagellanic Cloud (LMC) increases with their separation as the ~0.35power. This suggests that star formation is hierarchical in space and intime. Small regions form stars quickly and large regions, which oftencontain the small regions, form stars over a longer period. A similarresult found previously for Cepheid variables is statistically lesscertain than the cluster result.

Dynamical studies of cluster pairs in the Magellanic Clouds
We performed N-body simulations of star cluster encounters withHernquist's TREECODE in a CRAY YMP-2E computer under different initialconditions (relative positions and velocities, cluster sizes, masses andconcentration degrees). The total number of particles per simulationranged from 1024 to 20480. These models are compared with a series ofisodensity maps of cluster pairs in the Magellanic Clouds. Evidence isfound that during the interactions, transient morphological effects suchas an expanded halo, isophotal deformation and isophotal twisting canoccur as a result of tidal effects and dynamical friction. Thesimulations also show that different outcomes are possible depending onthe initial parameters: (i) long-standing changes of concentrationdegree can occur after the collision; (ii) one member can disaggregate;or (iii) the pair can coalesce into a single cluster with a distinctstructure compared with the original ones. These simulations canreproduce a wide range of morphological structures in observed clusterpairs.

Cepheids in MC Clusters: New Observations
Not Available

Star Clusters Driven to Form by Strong Collisions Between Gas Clouds in High-Velocity Random Motion
Abstract image available at:http://adsabs.harvard.edu/abs/1997AJ....113..249F

Carbon stars in LMC clusters revisited.
Abstract image available at:http://adsabs.harvard.edu/abs/1996A&A...316L...1M

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

Kugelsternhaufen in Galaxien.
Not Available

Yeni bir Makale Öner


Ýlgili Baðlantýlar

  • - Baðlantý Bulunamadý -
Yeni Bir Baðlantý Öner


sonraki gruplarýn üyesi:


Gözlemler ve gökölçümü verileri

Takýmyýldýz:Kilicbaligi
Sað Açýklýk:05h53m17.00s
Yükselim:-69°31'42.0"
Görünürdeki Parlaklýk:10

Kataloglar ve belirtme:
Özgün isimleri   (Edit)
NGC 2000.0NGC 2136

→ VizieR 'den daha fazla katalog ve tanýmlama isteyin