Contents
Images
Upload your image
DSS Images Other Images
Related articles
Debris disks in main-sequence binary systems. We observed 69 A3-F8 main-sequence binary star systems using theMultiband Imaging Photometer for Spitzer on board the Spitzer SpaceTelescope. We find emission significantly in excess of predictedphotospheric flux levels for 9+4-3% and40+7-6% of these systems at 24 and 70 μm,respectively. Twenty-two systems total have excess emission, includingfour systems that show excess emission at both wavelengths. A very largefraction (nearly 60%) of observed binary systems with small (<3 AU)separations have excess thermal emission. We interpret the observedinfrared excesses as thermal emission from dust produced by collisionsin planetesimal belts. The incidence of debris disks aroundmain-sequence A3-F8 binaries is marginally higher than that for singleold AFGK stars. Whatever combination of nature (birth conditions ofbinary systems) and nurture (interactions between the two stars) drivesthe evolution of debris disks in binary systems, it is clear thatplanetesimal formation is not inhibited to any great degree. We modelthese dust disks through fitting the spectral energy distributions andderive typical dust temperatures in the range 100-200 K and typicalfractional luminosities around 10-5, with both parameterssimilar to other Spitzer-discovered debris disks. Our calculated dusttemperatures suggest that about half the excesses we observe are derivedfrom circumbinary planetesimal belts and around one-third of theexcesses clearly suggest circumstellar material. Three systems withexcesses have dust in dynamically unstable regions, and we discusspossible scenarios for the origin of this short-lived dust.
| Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}
| The Vienna-KPNO search for Doppler-imaging candidate stars. I. A catalog of stellar-activity indicators for 1058 late-type Hipparcos stars We present the results from a spectroscopic Ca ii H&K survey of 1058late-type stars selected from a color-limited subsample of the Hipparcoscatalog. Out of these 1058 stars, 371 stars were found to showsignificant H&K emission, most of them previously unknown; 23% withstrong emission, 36% with moderate emission, and 41% with weak emission.These spectra are used to determine absolute H&K emission-linefluxes, radial velocities, and equivalent widths of theluminosity-sensitive Sr ii line at 4077 Ä. Red-wavelengthspectroscopic and Strömgren y photometric follow-up observations ofthe 371 stars with H&K emission are used to additionally determinethe absolute Hα -core flux, the lithium abundance from the Li i6708 Å equivalent width, the rotational velocity vsin i, theradial velocity, and the light variations and its periodicity. Thelatter is interpreted as the stellar rotation period due to aninhomogeneous surface brightness distribution. 156 stars were found withphotometric periods between 0.29 and 64 days, 11 additional systemsshowed quasi-periodic variations possibly in excess of ~50 days. Further54 stars had variations but no unique period was found, and four starswere essentially constant. Altogether, 170 new variable stars werediscovered. Additionally, we found 17 new SB1 (plus 16 new candidates)and 19 new SB2 systems, as well as one definite and two possible new SB3systems. Finally, we present a list of 21 stars that we think are mostsuitable candidates for a detailed study with the Doppler-imagingtechnique. Tables A1--A3 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Radial velocity measurements. IV - Ground-based accompaniment to the HIPPARCOS observation program The paper presents 396 radial velocities of stars distributed in 19fields of 4 x 4 degrees. The study employs the Fehrenbach objectiveprism method and the same measuring technique used in a previous paper(Fehrenbach et al., 1987).
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Andromède |
Right ascension: | 00h17m52.83s |
Declination: | +44°34'40.6" |
Apparent magnitude: | 7.373 |
Distance: | 163.132 parsecs |
Proper motion RA: | 31.1 |
Proper motion Dec: | -0.7 |
B-T magnitude: | 8.692 |
V-T magnitude: | 7.482 |
Catalogs and designations:
|