首页     开始     To Survive in the Universe    
Inhabited Sky
    News@Sky     天文图片     收集     论坛     Blog New!     常见问题     新闻     登录  

72 Her


目录

图像

上传图像

DSS Images   Other Images


相关文章

Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey
We have searched for infrared excesses around a well-defined sample of69 FGK main-sequence field stars. These stars were selected withoutregard to their age, metallicity, or any previous detection of IRexcess; they have a median age of ~4 Gyr. We have detected 70 μmexcesses around seven stars at the 3 σ confidence level. Thisextra emission is produced by cool material (<100 K) located beyond10 AU, well outside the ``habitable zones'' of these systems andconsistent with the presence of Kuiper Belt analogs with ~100 times moreemitting surface area than in our own planetary system. Only one star,HD 69830, shows excess emission at 24 μm, corresponding to dust withtemperatures >~300 K located inside of 1 AU. While debris disks withLdust/L*>=10-3 are rare around oldFGK stars, we find that the disk frequency increases from 2%+/-2% forLdust/L*>=10-4 to 12%+/-5% forLdust/L*>=10-5. This trend in thedisk luminosity distribution is consistent with the estimated dust inour solar system being within an order of magnitude greater or less thanthe typical level around similar nearby stars. Although there is nocorrelation of IR excess with metallicity or spectral type, there is aweak correlation with stellar age, with stars younger than a gigayearmore likely to have excess emission.

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

Lithium Abundances of F-, G-, and K-Type Stars: Profile-Fitting Analysis of the Li I 6708 Doublet
An extensive profile-fitting analysis was performed for the Li(+Fe)6707-6708Å feature of nearby 160 F-K dwarfs/subgiants (including27 planet-host stars) in the Galactic disk ( 7000 K ≳Teff ≳ 5000 K, -1 ≲ [Fe/H] ≲ +0.4), in orderto establish the photospheric lithium abundances of these stars. Thenon-LTE effect (though quantitatively insignificant) was taken intoaccount based on our statistical equilibrium calculations, which werecarried out on an adequate grid of models. Our results confirmed most ofthe interesting observational characteristics revealed by recentlypublished studies, such as the bimodal distribution of the Li abundancesfor stars at Teff ≳ 6000 K, the satisfactory agreementof the upper envelope of the A(Li) vs. [Fe/H] distribution with thetheoretical models, the existence of a positive correlation betweenA(Li) and the stellar mass, and the tendency of lower lithium abundancesof planet-host stars (as compared to stars without planets) at thenarrow ``transition'' region of 5900 K ≳ Teff ≳5800 K. The solar Li abundance derived from this analysis is 0.92 (H =12.00), which is by 0.24dex lower than the widely referenced standardvalue of 1.16.

Spectroscopic Study on the Atmospheric Parameters of Nearby F--K Dwarfs and Subgiants
Based on a collection of high-dispersion spectra obtained at OkayamaAstrophysical Observatory, the atmospheric parameters (Teff,log g, vt, and [Fe/H]) of 160 mid-F through early-K starswere extensively determined by the spectroscopic method using theequivalent widths of Fe I and Fe II lines along with the numericaltechnique of Takeda et al. (2002, PASJ, 54, 451). The results arecomprehensively discussed and compared with the parameter values derivedby different approaches (e.g., photometric colors, theoreticalevolutionary tracks, Hipparcos parallaxes, etc.) as well as with thepublished values found in various literature. It has been confirmed thatour purely spectroscopic approach yields fairly reliable and consistentresults.

Group, field and isolated early-type galaxies - I. Observations and nuclear data
This is the first paper of a series on the investigation of stellarpopulation properties and galaxy evolution of an observationallyhomogeneous sample of early-type galaxies in groups, field and isolatedgalaxies.Here we present high signal-to-noise ratio (S/N) long-slit spectroscopyof 86 nearby elliptical and S0 galaxies. Eight of them are isolated,selected according to a rigorous criterion, which guarantees a genuinelow-density subsample. The present survey has the advantage of coveringa larger wavelength range than normally found in the literature, whichincludes [OIII]λ5007 and Hα, both lines important foremission correction. Among the 86 galaxies with S/N >= 15 (perresolution element, for re/8 central aperture), 57 have theirHβ-index corrected for emission (the average correction is 0.190Åin Hβ) and 42 galaxies reveal [OIII]λ5007 emission,of which 16 also show obvious Hα emission. Most of the galaxies inthe sample do not show obvious signs of disturbances nor tidal featuresin the morphologies, although 11 belong to the Arp catalogue of peculiargalaxies; only three of them (NGC 750, 751 and 3226) seem to be stronglyinteracting. We present the measurement of 25 central line-strengthindices calibrated to the Lick/IDS system. Kinematic information isobtained for the sample. We analyse the line-strength index versusvelocity dispersion relations for our sample of mainly low-densityenvironment galaxies, and compare the slope of the relations withcluster galaxies from the literature. Our main findings are that theindex-σ0 relations presented for low-density regionsare not significantly different from those of cluster E/S0s. The slopeof the index-σ0 relations does not seem to change forearly-type galaxies of different environmental densities, but thescatter of the relations seems larger for group, field and isolatedgalaxies than for cluster galaxies.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Vertical Stellar Kinematics in Face-On Barred Galaxies: Estimating the Ages of Bars
In order to perform a detailed study of the stellar kinematics in thevertical axis of bars, we obtained high signal-to-noise spectra alongthe major and minor axes of the bars in a sample of 14 face-on galaxiesand used them to determine the line-of-sight stellar velocitydistribution, parameterized as a Gauss-Hermite series. With these data,we developed a diagnostic tool that allows one to distinguish betweenrecently formed and evolved bars, as well as to estimate their ages,assuming that bars form in vertically thin disks that are recognizableby low values for the vertical velocity dispersion σz.Through N-body realizations of bar unstable disk galaxies we were alsoable to check the timescales involved in the processes that give bars animportant vertical structure. We show that σz inevolved bars is roughly 100 km s-1, which translates to aheight scale of about 1.4 kpc, giving support to scenarios in whichbulges form through disk material. Furthermore, the bars in ournumerical simulations have values for σz generallysmaller than 50 km s-1, even after evolving for 2 Gyr,suggesting that a slow process is responsible for making bars asvertically thick as we observe. We verify theoretically that theSpitzer-Schwarzschild mechanism is quantitatively able to explain theseobservations if we assume that giant molecular clouds are twice asconcentrated along the bar as in the rest of the disk.

Single-Visit Photometric and Obscurational Completeness
We report a method that uses ``completeness'' to estimate the number ofextrasolar planets discovered by an observing program with adirect-imaging instrument. We develop a completeness function forEarth-like planets on ``habitable'' orbits for an instrument with acentral field obscuration, uniform sensitivity in an annular detectionzone, and limiting sensitivity that is expressed as a ``deltamagnitude'' with respect to the star, determined by systematic effects(given adequate exposure time). We demonstrate our method of estimationby applying it to our understanding of the coronagraphic version of theTerrestrial Planet Finder (TPF-C) mission as of 2004 October. Weestablish an initial relationship between the size, quality, andstability of the instrument's optics and its ability to meet missionscience requirements. We provide options for increasing the fidelity andversatility of the models on which our method is based, and we discusshow the method could be extended to model the TPF-C mission as a wholeto verify that its design can meet the science requirements.

Stars within 15 Parsecs: Abundances for a Northern Sample
We present an abundance analysis for stars within 15 pc of the Sunlocated north of -30° declination. We have limited our abundancesample to absolute magnitudes brighter than +7.5 and have eliminatedseveral A stars in the local vicinity. Our final analysis list numbers114 stars. Unlike Allende Prieto et al. in their consideration of a verysimilar sample, we have enforced strict spectroscopic criteria in thedetermination of atmospheric parameters. Nevertheless, our results arevery similar to theirs. We determine the mean metallicity of the localregion to be <[Fe/H]>=-0.07 using all stars and -0.04 when interlopersfrom the thick disk are eliminated.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Stars of Extragalactic Origin in the Solar Neighborhood
For 77 main-sequence F-G stars in the solar neighborhood with publishediron, magnesium, and europium abundances determined from high-dispersionspectra and with the ages estimated from theoretical isochrones, wecalculated the spatial velocities using Hipparcos data and the Galacticorbital elements. A comparison with the orbital elements of the globularclusters that are known to have been accreted by our Galaxy in the pastreveals stars of extragalactic origin. We show that the abundance ratiosof r- and alpha-elements in all the accreted stars differ sharply fromthose in the stars that are genetically associated with the Galaxy.According to current theoretical models, europium is produced mainly inlow-mass type-II supernovae (SNe II), while magnesium is synthesized inlarge quantities in high-mass SN II progenitors. Since all the oldaccreted stars of our sample exhibit a significant Eu overabundancerelative to Mg, we conclude that the maximum masses of the SN IIprogenitors outside the Galaxy were much lower than those inside it. Onthe other hand, only a small number of young accreted stars exhibit lownegative ratios [Eu/Mg] < 0. This can be explained by the delay ofprimordial star formation and the explosions of high-mass SNe II in arelatively small part of extragalactic space. We provide evidence thatthe interstellar medium was weakly mixed at the early evolutionarystages of the Galaxy formed from a single protogalactic cloud, and thatthe maximum mass of the SN II progenitors increased in it with timesimultaneously with the increase in mean metallicity.

Neutron-Capture Elements in Halo, Thick-Disk, and Thin-Disk Stars: Neodymium
We have derived the LTE neodymium abundances in 60 cool stars withmetallicities [Fe/H] from 0.25 to -1.71 by applying a synthetic-spectrumanalysis to spectroscopic observations of NdII lines with a resolutionof λ/Δλ⋍60 000 and signal-to-noise ratios of100 200. We have improved the atomic parameters of NdII and blendinglines by analyzing the corresponding line pro files in the solarspectrum. Neodymium is overabundant with respect to iron in halo stars,[Nd/Fe]=0.33±0.09, with the [Nd/Fe] ratio decreasingsystematically with metallicity when [Fe/H]>-1. This reflects anonset of efficient iron production in type I supernovae during theformation of the thick disk. The [Nd/Ba] and [Nd/Eu] abundance ratiosbehave differently in halo, thick-disk, and thin-disk stars. Theobserved abundance ratios in halo stars, [Nd/Ba]=0.34±0.08 and[Nd/Eu]=-0.27±0.05, agree within the errors with the ratios ofthe elemental yields for the r-process. These results support theconclusion of other authors based on analyses of other elements that ther-process played the dominant role in the synthesis of heavy elementsduring the formation of the halo. The [Nd/Ba] and [Nd/Eu] ratios forthick-disk stars are almost independent of metallicity([Nd/Ba]=0.28(±0.03)-0.01(±0.04) [Fe/H] and[Nd/Eu]=-0.13(±0.03)+0.05(±0.04) [Fe/H]) but are smallerin absolute value than the corresponding ratios for halo stars,suggesting that the synthesis of s-process nuclei started during theformation of the thick disk. The s-process is estimated to havecontributed ⋍30% of the neodymium produced during this stage ofthe evolution of the Galaxy. The [Nd/Ba] ratio decreases abruptly by0.17 dex in the transition from the thick to the thin disk. Thesystematic decrease of [Nd/Ba] and increase of [Nd/Eu] with increasingmetallicity of thin-disk stars point toward a dominant role of thes-process in the synthesis of heavy elements during this epoch.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

The Rise of the s-Process in the Galaxy
From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.

Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range
We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.

Boron Benchmarks for the Galactic Disk
Sixteen Population I solar-type dwarfs have been selected to ascertainthe baseline B abundance in the Galactic disk for a range of a factor of4 in metallicity: from [Fe/H] of -0.5 to +0.1. All the stars selectedare undepleted in Be, which ensures that they have also retained theirfull initial abundance of B. Evaluation of the trend of B with Feprovides a means to study the evolution of B in the Galactic disk. Weobserved 16 bright stars around the B I 2497 Å line, using theSTIS echelle spectrograph on HST. New observations of Li and Be in somestars were made, and previous abundance studies of Li and Be in thesestars were reevaluated using revised parameters and a modified spectralsynthesis code for consistency with the B measurements. Abundances of Bwere calculated by spectrum synthesis with the revised MOOG code, whichaccounts for the increased opacity in the UV due to metals; the LTE Babundances were then corrected for non-LTE effects. Four additionalstars with undepleted Be have HST B observations, which increase oursample to 20. For these disk stars there is a shallow slope for B versusFe and Be versus Fe, such that as Fe increases by a factor of 4, B andBe increase by 1.7 times. The slope for BLTE versus Fe is0.31+/-0.09, for BNLTE versus Fe 0.40+/-0.12, and for Beversus Fe 0.38+/-0.14. We have estimated the effect of additional UVopacity from Mg and find that an increase of 0.3 dex in Mg results in ahigher B abundances by 0.1 dex for all the disk stars. Individual starsare not consistently above (or below) the mean in both B and Be,implying that the star-to-star differences are not due to variations inthe elemental content of the ``natal'' clouds. We find that the trend ofB abundance with [Fe/H] is consistent with the general trend observed inhalo stars. If we connect the halo and disk stars, then an increase inthe Fe abundance by 103 is accompanied by increases of 100times in B and 550 times in Be. However, fitting two separate relationsfor the disk and the halo stars results in a somewhat steeper slope forBe for the halo stars (1.08+/-0.07) relative to the disk stars(0.38+/-0.14). This is the case for B also in LTE, with Bhalo(0.90+/-0.07) versus Bdisk (0.32+/-0.12). However, the NLTE Babundance increases more slowly for halo stars than the Be abundancedoes; since this is not predicted by light-element synthesis ordepletion, we suggest that a full NLTE analysis would be preferable tomaking the (small) corrections to the LTE abundances. Some of the lowestmetallicity stars are thought to have only upper limits on the Babundance; if that is the case, the NLTE B slope is steeper, nearing1.0. The abundance of B in the disk stars is observed to be a factor of~15+7-5 more than the abundance of Be in thesestars, a result consistent with the predictions of Galactic cosmic-ray(GCR) spallation, B/Be=15+/-5. The upper envelope for Li versus Feyields Li/B and Li/Be ratios that, when coupled with models andpredictions, indicate that 20%-45% of Li might be produced by GCRs.While there is no evidence to support the production of B by neutrinospallation, we cannot rule it out.Based on observations obtained with the NASA/ESA Hubble Space Telescope(HST) through the Space Telescope Science Institute, which is operatedby the Association of Universities for Research in Astronomy, Inc.,under NASA contract NAS5-26555.

The Structure of the Local Interstellar Medium. II. Observations of D I, C II, N I, O I, Al II, and Si II toward Stars within 100 Parsecs
Moderate- and high-resolution measurements(λ/Δλ>~40,000) of interstellar resonance lines ofD I, C II, N I, O I, Al II, and Si II (hereafter called light ions) arepresented for all available observed targets located within 100 pc thatalso have high-resolution observations of interstellar Fe II or Mg II(heavy ions) lines. All spectra were obtained with the Goddard HighResolution Spectrograph or the Space Telescope Imaging Spectrographinstrument aboard the Hubble Space Telescope. Currently, there are 41sight lines to targets within 100 pc with observations that include aheavy ion at high resolution and at least one light ion at moderate orhigh resolution. We present new measurements of light ions along 33 ofthese sight lines and collect from the literature results for theremaining sight lines that have already been analyzed. For all of thenew observations we provide measurements of the central velocity,Doppler width parameter, and column density for each absorptioncomponent. We greatly increase the number of sight lines with usefullocal interstellar medium (LISM) absorption-line measurements of lightions by using knowledge of the kinematic structure along a line of sightobtained from high-resolution observations of intrinsically narrowabsorption lines, such as Fe II and Mg II. We successfully fit theabsorption lines with this technique, even with moderate-resolutionspectra. Because high-resolution observations of heavy ions are criticalfor understanding the kinematic structure of local absorbers along theline of sight, we include 18 new measurements of Fe II and Mg II in anAppendix. We present a statistical analysis of the LISM absorptionmeasurements, which provides an overview of some physicalcharacteristics of warm clouds in the LISM, including temperature andturbulent velocity. This complete collection and reduction of allavailable LISM absorption measurements provides an important databasefor studying the structure of nearby warm clouds, including ionization,abundances, and depletions. Subsequent papers will present models forthe morphology and physical properties of individual structures (clouds)in the LISM.Based on observations made with the NASA/ESA Hubble Space Telescope,obtained from the Data Archive at the Space Telescope Science Institute,which is operated by the Association of Universities for Research inAstronomy, Inc., under NASA contract NAS AR-09525.01A. Theseobservations are associated with program 9525.

Nearby stars of the Galactic disk and halo. III.
High-resolution spectroscopic observations of about 150 nearby stars orstar systems are presented and discussed. The study of these and another100 objects of the previous papers of this series implies that theGalaxy became reality 13 or 14 Gyr ago with the implementation of amassive, rotationally-supported population of thick-disk stars. The veryhigh star formation rate in that phase gave rise to a rapid metalenrichment and an expulsion of gas in supernovae-driven Galactic winds,but was followed by a star formation gap for no less than three billionyears at the Sun's galactocentric distance. In a second phase, then, thethin disk - our ``familiar Milky Way'' - came on stage. Nowadays ittraces the bright side of the Galaxy, but it is also embedded in a hugecoffin of dead thick-disk stars that account for a large amount ofbaryonic dark matter. As opposed to this, cold-dark-matter-dominatedcosmologies that suggest a more gradual hierarchical buildup throughmergers of minor structures, though popular, are a poor description forthe Milky Way Galaxy - and by inference many other spirals as well - if,as the sample implies, the fossil records of its long-lived stars do notstick to this paradigm. Apart from this general picture that emergeswith reference to the entire sample stars, a good deal of the presentwork is however also concerned with detailed discussions of manyindividual objects. Among the most interesting we mention the bluestraggler or merger candidates HD 165401 and HD 137763/HD 137778, thelikely accretion of a giant planet or brown dwarf on 59 Vir in itsrecent history, and HD 63433 that proves to be a young solar analog at\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspectednon-single from the Hipparcos astrometry, is directly detectable in thehigh-resolution spectroscopic tracings, whereas the visual binary \chiCet is instead at least triple, and presumably even quadruple. Withrespect to the nearby young stars a complete account of the Ursa MajorAssociation is presented, and we provide as well plain evidence foranother, the ``Hercules-Lyra Association'', the likely existence ofwhich was only realized in recent years. On account of its rotation,chemistry, and age we do confirm that the Sun is very typical among itsG-type neighbors; as to its kinematics, it appears however not unlikelythat the Sun's known low peculiar space velocity could indeed be thecause for the weak paleontological record of mass extinctions and majorimpact events on our parent planet during the most recent Galactic planepassage of the solar system. Although the significance of thiscorrelation certainly remains a matter of debate for years to come, wepoint in this context to the principal importance of the thick disk fora complete census with respect to the local surface and volumedensities. Other important effects that can be ascribed to this darkstellar population comprise (i) the observed plateau in the shape of theluminosity function of the local FGK stars, (ii) a small thoughsystematic effect on the basic solar motion, (iii) a reassessment of theterm ``asymmetrical drift velocity'' for the remainder (i.e. the thindisk) of the stellar objects, (iv) its ability to account for the bulkof the recently discovered high-velocity blue white dwarfs, (v) itsmajor contribution to the Sun's ˜220 km s-1 rotationalvelocity around the Galactic center, and (vi) the significant flatteningthat it imposes on the Milky Way's rotation curve. Finally we note ahigh multiplicity fraction in the small but volume-complete local sampleof stars of this ancient population. This in turn is highly suggestivefor a star formation scenario wherein the few existing single stellarobjects might only arise from either late mergers or the dynamicalejection of former triple or higher level star systems.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence
Highly precise temperatures (σ = 10-15 K) have been determinedfrom line depth ratios for a set of 248 F-K field dwarfs of about solarmetallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42000), high S/N echelle spectra. A new gap has been discovered in thedistribution of stars on the Main Sequence in the temperature range 5560to 5610 K. This gap coincides with a jump in the microturbulent velocityVt and the well-known Li depression near 5600 K in fielddwarfs and open clusters. As the principal cause of the observeddiscontinuities in stellar properties we propose the penetration of theconvective zone into the inner layers of stars slightly less massivethan the Sun and related to it, a change in the temperature gradient.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute-Provence (France).Full Table 1 is only available in electronic form athttp://www.edpsciences.org

Cu and Zn in the early Galaxy
We present Cu and Zn abundances for 38 FGK stars, mostly dwarfs,spanning a metallicity range between solar and [Fe/H] = -3. Theabundances were obtained using Kurucz's local thermal equilibrium (LTE)model atmospheres and the near-UV lines of Cu I 3273.95 Å and Zn I3302.58 Å observed at high spectral resolution. The trend of[Cu/Fe] versus [Fe/H] is almost solar for [Fe/H] > -1 and thendecreases to a plateau <[Cu/Fe]> = -0.98 at [Fe/H] < -2.5,whereas the [Zn/Fe] trend is essentially solar for [Fe/H] > -2 andthen slightly increases at lower metallicities to an average value of<[Zn/Fe]> = +0.18. We compare our results with previous work onthese elements, and briefly discuss them in terms of nucleosynthesisprocesses. Predictions of halo chemical evolution fairly reproduce thetrends, especially the [Cu/Fe] plateau at very low metallicities, but toa lesser extent the higher [Zn/Fe] ratios at low metallicities,indicating possibly missing yields.

Sodium abundances in nearby disk stars
We present sodium abundances for a sample of nearby stars. All resultshave been derived from NLTE statistical equilibrium calculations. Theinfluence of collisional interactions with electrons and hydrogen atomsis evaluated by comparison of the solar spectrum with very precise fitsto the Na I line cores. The NLTE effects are more pronounced inmetal-poor stars since the statistical equilibrium is dominated bycollisions of which at least the electronic component is substantiallyreduced. The resulting influence on the determination of sodiumabundances is in a direction opposite to that found previously for Mgand Al. The NLTE corrections are about -0.1 in thick-disk stars with[Fe/H] ˜-0.6. Our [Na/Fe] abundance ratios are about solar forthick- and thin-disk stars. The increase in [Na/Fe] as a function of[Fe/H] for metal-rich stars found by Edvardsson et al. (\cite{EAG93}) isconfirmed. Our results suggest that sodium yields increase with themetallicity, and quite large amounts of sodium may be produced by AGBstars. We find that [Na/Fe] ratios, together with either [Mg/Fe] ratio,kinematic data or stellar evolutionary ages, make possible theindividual discrimination between thin- and thick-disk membership.Based on observations collected at the Germany-Spanish AstronomicalCenter, Calar Alto, Spain.Tables \ref{table2} and \ref{table3} are only available in electronicform at http://www.edpsciences.org

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

Galactic evolution of nitrogen
We present detailed spectroscopic analysis of nitrogen abundances in 31unevolved metal-poor stars analysed by spectral synthesis of the near-UVNH band at 3360 Å observed at high resolution with varioustelescopes. We found that [N/Fe] scales with that of iron in themetallicity range -3.1 <[Fe/H]<0 with the slope 0.01±0.02.Furthermore, we derive uniform and accurate (N/O) ratios using oxygenabundances from near-UV OH lines obtained in our previous studies. Wefind that a primary component of nitrogen is required to explain theobservations. The NH lines are discovered in the VLT/UVES spectra of thevery metal-poor subdwarfs G64-12 and LP815-43 indicating that thesestars are N rich. The results are compared with theoretical models andobservations of extragalactic H II regions and Damped Lyα systems.This is the first direct comparison of the (N/O) ratios in these objectswith those in Galactic stars.

S4N: A spectroscopic survey of stars in the solar neighborhood. The Nearest 15 pc
We report the results of a high-resolution spectroscopic survey of allthe stars more luminous than M_V = 6.5 mag within 14.5 pc from the Sun.The Hipparcos catalog's completeness limits guarantee that our survey iscomprehensive and free from some of the selection effects in othersamples of nearby stars. The resulting spectroscopic database, which wehave made publicly available, includes spectra for 118 stars obtainedwith a resolving power of R ≃ 50 000, continuous spectral coveragebetween ˜ 362-921 nm, and typical signal-to-noise ratios in therange 150-600. We derive stellar parameters and perform a preliminaryabundance and kinematic analysis of the F-G-K stars in the sample. Theinferred metallicity ([Fe/H]) distribution is centered at about -0.1dex, and shows a standard deviation of 0.2 dex. A comparison with largersamples of Hipparcos stars, some of which have been part of previousabundance studies, suggests that our limited sample is representative ofa larger volume of the local thin disk. We identify a number ofmetal-rich K-type stars which appear to be very old, confirming theclaims for the existence of such stars in the solar neighborhood. Withatmospheric effective temperatures and gravities derived independentlyof the spectra, we find that our classical LTE model-atmosphere analysisof metal-rich (and mainly K-type) stars provides discrepant abundancesfrom neutral and ionized lines of several metals. This ionizationimbalance could be a sign of departures from LTE or inhomogeneousstructure, which are ignored in the interpretation of the spectra.Alternatively, but seemingly unlikely, the mismatch could be explainedby systematic errors in the scale of effective temperatures. Based ontransitions of majority species, we discuss abundances of 16 chemicalelements. In agreement with earlier studies we find that the abundanceratios to iron of Si, Sc, Ti, Co, and Zn become smaller as the ironabundance increases until approaching the solar values, but the trendsreverse for higher iron abundances. At any given metallicity, stars witha low galactic rotational velocity tend to have high abundances of Mg,Si, Ca, Sc, Ti, Co, Zn, and Eu, but low abundances of Ba, Ce, and Nd.The Sun appears deficient by roughly 0.1 dex in O, Si, Ca, Sc, Ti, Y,Ce, Nd, and Eu, compared to its immediate neighbors with similar ironabundances.Based on observations made with the 2.7 m telescope at the McDonaldObservatory of the University of Texas at Austin (Texas), and the 1.52 mtelescope at the European Southern Observatory (La Silla, Chile) underthe agreement with the CNPq/Observatorio Nacional (Brazil).Tables 3-5 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/420/183

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Some anomalies in the occurrence of debris discs around main-sequence A and G stars
Debris discs consist of large dust grains that are generated bycollisions of comets or asteroids around main-sequence stars, and thequantity and distribution of debris may be used to detect the presenceof perturbing planets akin to Neptune. We use stellar and disc surveysto compare the material seen around A- and G-type main-sequence stars.Debris is detected much more commonly towards A stars, even when acomparison is made only with G stars of comparable age. Detection ratesare consistent with disc durations of ~0.5 Gyr, which may occur at anytime during the main sequence. The higher detection rate for A stars canresult from this duration being a larger fraction of the main-sequencelifetime, possibly boosted by a globally slightly larger disc mass thanfor the G-type counterparts. The disc mass range at any given age is afactor of at least ~100 and any systematic decline with time is slow,with a power law estimated to not be steeper than t-1/2.Comparison with models shows that dust can be expected as late as a fewGyr when perturbing planetesimals form slowly at large orbital radii.Currently, the Solar system has little dust because the radius of theKuiper Belt is small and hence the time-scale to produce planetesimalswas less than 1 Gyr. However, the apparently constant duration of ~0.5Gyr when dust is visible is not predicted by the models.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

提交文章


相关链接

  • - 没有找到链接 -
提交链接


下列团体成员


观测天体数据

星座:武仙座
右阿森松:17h20m39.60s
赤纬:+32°28'04.0"
视星:5.39
距离:14.393 天文距离
右阿森松适当运动:135.8
赤纬适当运动:-1039.9
B-T magnitude:6.126
V-T magnitude:5.453

目录:
适当名称   (Edit)
Flamsteed72 Her
HD 1989HD 157214
TYCHO-2 2000TYC 2596-1317-1
USNO-A2.0USNO-A2 1200-08337357
BSC 1991HR 6458
HIPHIP 84862

→ 要求更多目录从vizier